Eigenvalues and Singular Values 10.1 Eigenvalue and Singular Value Decompositions

ثبت نشده
چکیده

This chapter is about eigenvalues and singular values of matrices. Computational algorithms and sensitivity to perturbations are both discussed. An eigenvalue and eigenvector of a square matrix A are a scalar λ and a nonzero vector x so that Ax = λx. A singular value and pair of singular vectors of a square or rectangular matrix A are a nonnegative scalar σ and two nonzero vectors u and v so that Av = σu, A H u = σv. The superscript on A H stands for Hermitian transpose and denotes the complex conjugate transpose of a complex matrix. If the matrix is real, then A T denotes the same matrix. In Matlab, these transposed matrices are denoted by A'. The term " eigenvalue " is a partial translation of the German " eigenvert. " A complete translation would be something like " own value " or " characteristic value, " but these are rarely used. The term " singular value " relates to the distance between a matrix and the set of singular matrices. Eigenvalues play an important role in situations where the matrix is a transformation from one vector space onto itself. Systems of linear ordinary differential equations are the primary examples. The values of λ can correspond to frequencies of vibration, or critical values of stability parameters, or energy levels of atoms. Singular values play an important role where the matrix is a transformation from one vector space to a different vector space, possibly with a different dimension. Systems of over-or underdetermined algebraic equations are the primary examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations∗

The classical perturbation theory for Hermitian matrix eigenvalue and singular value problems provides bounds on the absolute differences between approximate eigenvalues (singular values) and the true eigenvalues (singular values) of a matrix. These bounds may be bad news for small eigenvalues (singular values), which thereby suffer worse relative uncertainty than large ones. However, there are...

متن کامل

Accurate computation of singular values and eigenvalues of symmetric matrices ∗

We give the review of recent results in relative perturbation theory for eigenvalue and singular value problems and highly accurate algorithms which compute eigenvalues and singular values to the highest possible relative accuracy.

متن کامل

A note on polar decomposition based Geršgorin-type sets

Abstract: Let B ∈ Cn×n denote a finite-dimensional square complex matrix. In [6] and [7], Professor Varga and I introduced Geršgorin-type sets which were developed from Singular Value Decompositions (SVDs) of B. In this note, our work is extended by introducing the polar SV-Geršgorin set, Γ(B). The set Γ(B) is a union of n closed discs in C, whose centers and radii are defined in terms of the e...

متن کامل

Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue

Given four complex matrices $A$‎, ‎$B$‎, ‎$C$ and $D$ where $Ainmathbb{C}^{ntimes n}$‎ ‎and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc}‎ A & B ‎ C & D‎ end{array} right)$ be a normal matrix and‎ assume that $lambda$ is a given complex number‎ ‎that is not eigenvalue of matrix $A$‎. ‎We present a method to calculate the distance norm (with respect to 2-norm) from $D$‎ to ...

متن کامل

Orthogonal Matrix Decompositions in Systemsand

In this paper we present several types of orthogonal matrix decompositions used in systems and control. We focus on those related to eigenvalue and singular value problems and include generalizations to several matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008